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Abstract: Sentence similarity measures play an increasingly important role in text-
related research and applications in areas such as text mining, web page retrieval and
dialogue systems. Existing methods for computing sentence similarity have been
adopted from approaches used for long text documents. These methods process
sentences in a very high dimensional space and are consequently inefficient, require
human input and are not adaptable to some application domains. This paper focuses
directly on computing the similarity between very short texts of sentence length. It
presents an algorithm that takes account of semantic information and word order
information implied in the sentences. The semantic similarity of two sentences is
calculated using information from a structured lexical database and from corpus
statistics. The use of a lexical database enables our method to model human common
sense knowledge and the incorporation of corpus statistics allows our method to be
adaptable to different domains. The proposed method can be used in a variety of
applications that involve text knowledge representation and discovery. Experiments on
two sets of selected sentence pairs demonstrate that the proposed method provides a

similarity measure that shows a significant correlation to human intuition.
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1 Introduction

Recent applications of natural language processing present a need for an effective
method to compute the similarity between very short texts or sentences [25]. An
example of this is a conversational agent/dialogue system with script strategies [1] in
which sentence similarity is essential to the implementation. The employment of
sentence similarity can significantly simplify the agent’s knowledge base by using
natural sentences rather than structural patterns of sentences. Sentence similarity will
have internet related applications as well. In web page retrieval, sentence similarity has
proved to be one of the best techniques for improving retrieval effectiveness, where
titles are used to represent documents in the named page finding task [29]. In image
retrieval from the web, the use of short text surrounding the images can achieve a higher
retrieval precision than the use of the whole document in which the image is embedded
[8]. In text mining, sentence similarity is used as a criterion to discover unseen
knowledge from textual databases [2]. In addition, the incorporation of short-text
similarity is beneficial to applications such as text summarization [9], text
categorization [15] and machine translation [21]. These exemplar applications show that
the computing of sentence similarity has become a generic component for the research
community involved in text-related knowledge representation and discovery.
Traditionally, techniques for detecting similarity between long texts (documents)
have centred on analysing shared words [36]. Such methods are usually effective when
dealing with long texts because similar long texts will usually contain a degree of co-
occurring words. However, in short texts word co-occurrence may be rare or even null.
This is mainly due to the inherent flexibility of natural language enabling people to
express similar meanings using quite different sentences in terms of structure and word

content. Since such surface information in short texts is very limited, this problem poses



a difficult computational challenge. The focus of this paper is on computing the
similarity between very short texts, primarily of sentence length.

Although sentence similarity is increasingly in demand from a variety of
applications as described earlier in this paper, the adaptation of available measures to
computing sentence similarity has three major drawbacks. Firstly a sentence is
represented in a very high dimensional space with hundreds or thousands of dimensions
[18], [36]. This results in a very sparse sentence vector which is consequently
computationally inefficient. High dimensionality and high sparsity can also lead to
unacceptable performance in similarity computation [5]. Secondly some methods
require the user’s intensive involvement to manually pre-process sentence information
[22]. Thirdly once the similarity method is designed for an application domain, it cannot
be adapted easily to other domains. This lack of adaptability does not correspond to
human language usage as sentence meaning may change, to varying extents, from
domain to domain. To address these drawbacks, this paper aims to develop a method
that can be used generally in applications requiring sentence similarity computation. An
effective method is expected to be dynamic in only focusing on the sentences of
concern, fully automatic without requiring users’ manual work and readily adaptable
across the range of potential application domains.

The next section reviews some related work briefly. Section 3 presents a new
method for measuring sentence similarity. Section 4 provides implementation
considerations related to obtaining information from knowledge bases. Section 5 shows
the similarities calculated for a set of Natural Language Processing (NLP) related
sentence pairs and carries out an experiment involving 32 human participants providing
similarity ratings for a dataset of 30 selected sentence pairs. These results are then used
to evaluate our similarity method. Section 5 concludes that the proposed method
coincides with human perceptions about sentence similarity. Finally section 6

summarizes the work, draws some conclusions and proposes future related work.



2 Related Work

In general, there is extensive literature on measuring the similarity between documents
or long texts [1], [12], [17], [24], but there are very few publications relating to the
measurement of similarity between very short texts [10] or sentences. This section
reviews some related work in order to explore the strengths and limitations of previous
methods, and to identify the particular difficulties in computing sentence similarity.
Related works can roughly be classified into three major categories: word co-occurrence
methods, corpus-based methods, descriptive features-based methods.

The word co-occurrence methods are often known as the ‘bag of words’ method.
It is commonly used in Information Retrieval (IR) systems [24]. The systems have a
pre-compiled word list with n words. The value of n is generally in the thousands or
hundreds of thousands in order to include all meaningful words in a natural language.
Each document is represented using these words as a vector in n-dimensional space. A
query is also considered as a document. The relevant documents are then retrieved
based on the similarity between the query vector and the document vector. This
technique relies on the assumption that more similar documents share more of the same
words. If this technique were applied to sentence similarity, it would have three obvious
drawbacks:

1) The sentence representation is not very efficient. The vector dimension n is very
large compared to the number of words in a sentence, thus the resulting vectors
would have many null components.

2) The word set in IR systems usually exclude function words such as the, of, an,
etc. Function words are not very helpful for computing document similarity, but
cannot be ignored for sentence similarity because they carry structural
information, which is useful in interpreting sentence meaning. If function words

were included, the value for n would be greater still.



3) Sentences with similar meaning do not necessarily share many words.

One extension of word co-occurrence methods is the use of a lexical dictionary to
compute the similarity of a pair of words taken from the two sentences that are being
compared (where one word is taken from each sentence to form a pair). Sentence
similarity is simply obtained by aggregating similarity values of all word pairs [28].
Another extension of word co-occurrence techniques leads to the pattern matching
methods which are commonly used in conversational agents and text mining [7]. Pattern
matching differs from pure word co-occurrence methods by incorporating local
structural information about words in the predicated sentences. A meaning is conveyed
in a limited set of patterns where each is represented using a regular expression [14]
(generally consisting of parts of words and various wildcards) to provide generalisation.
Similarity is calculated using a simple pattern matching algorithm. This technique
requires a complete pattern set for each meaning, in order to avoid ambiguity and
mismatches. Manual compilation is an immensely arduous and tedious task. At present
it is not possible to prove that a pattern set is complete and thus there is no automatic
method for compiling such a pattern set. Finally, once the pattern sets are defined, the
algorithm is unable to cope with unplanned novel utterances from human users.

One recent active field of research that contributes to sentence similarity
computation is the methods based on statistical information of words in a huge corpus.
Well known methods in corpus-based similarity are the latent semantic analysis (LSA)
[10], [17], [18] and the Hyperspace Analogues to Language (HAL) model [5]. Some
leading researchers in LSA boldly claim that LSA is a complete model of language
understanding [17]. In LSA, a set of representative words needs to be identified from a
large number of contexts (each described by a corpus). A word by context matrix is
formed based on the presence of words in contexts. The matrix is decomposed by
singular value decomposition (SVD) into the product of three other matrices including

the diagonal matrix of singular values [19]. The diagonal singular matrix is truncated by



deleting small singular values. In this way, the dimensionality is reduced. The original
word by context matrix is then reconstructed from the reduced dimensional space.
Through the process of decomposition and reconstruction, LSA acquires word
knowledge that spreads in contexts. When LSA is used to compute sentence similarity,
a vector for each sentence is formed in the reduced dimension space, similarity is then
measured by computing the similarity of these two vectors [10]. Because of the
computational limit of SVD, the dimension size of the word by context matrix is limited
to the several hundreds. As the input sentences may be from an unconstrained domain
(and thus not represented in the contexts) some important words from the input
sentences may not be included in the LSA dimension space. Secondly, the dimension is
fixed and so the vector is fixed and is thus likely to be a very sparse representation of a
short text such as a sentence. Like other methods, LSA ignores any syntactic
information from the two sentences being compared and is understood to be more
appropriate for larger texts than the sentences dealt with in this work [18].

Another important work in corpus-based methods is Hyperspace Analogues to
Language (HAL) [5]. Indeed HAL is closely related to LSA and they both capture the
meaning of a word or text using lexical co-occurrence information. Unlike LSA that
builds an information matrix of words by text units of paragraphs or documents, HAL
builds a word-by-word matrix based on word co-occurrences within a moving window
of a pre-defined width. The window (typically with a width of 10 words) moves over
the entire text of the corpus. An N x N matrix is formed for a given vocabulary of N
words. Each entry of the matrix records the (weighted) word co-occurrences within the
window moving through the entire corpus. The meaning of a word is then represented
as a 2N dimensional vector by combining the corresponding row and column in the
matrix. Subsequently a sentence vector is formed by adding together the word vectors
for all words in the sentence. Similarity between two sentences is calculated using a

metric such as Euclidean distance. However the authors’ experimental results showed



that HAL was not so promising as LSA in the computation of similarity for short texts
[5]. HAL’s drawback may be due to the building of the memory matrix and its approach
to forming sentence vectors: the word-by-word matrix does not capture sentence
meaning well and the sentence vector becomes diluted as large number of words are
added to it.

The third category of related work is the descriptive features-based methods. The
feature vector method tries to represent a sentence using a set of predefined features
[22]. Basically a word in a sentence is represented using semantic features, for example,
nouns may have features such as HUMAN (with value of human or nonhuman),
SOFTNESS (soft or hard), and POINTNESS (pointed or rounded). A variation of
feature vector methods is the introduction of primary features and composite features
[12], [13]. Primary features are those primitive features that compare single items from
each text unit. Composite features are the combination of pairs of primitive features. A
text is then represented in a vector consisting of values of primary features and
composite features. Similarity between two texts is obtained through a trained classifier.
The difficulties for this method lie in the definition of effective features and in
automatically obtaining values for features from a sentence. The preparation of a
training vector set could be an impractical, tedious and time-consuming task. Moreover,
features can be well-defined for concrete concepts; however it still is problematic to
define features for abstract concepts.

Overall, the aforementioned methods compute similarity according to the co-
occurring words in the texts, and ignore syntactic information. They work well for long
texts because long texts have adequate information (i.e. they have a sufficient number of
co-occurring words) for manipulation by a computational method. The proposed
algorithm addresses the limitations of these existing methods by forming the word
vector dynamically based entirely on the words in the compared sentences. The

dimension of our vector is not fixed but varies with the sentence pair and so it is far



more computationally efficient than existing methods. Our algorithm also considers

word order, which is a further aspect of primary syntactic information [1].

3 The Proposed Text Similarity Method

The proposed method derives text similarity from semantic and syntactic information
contained in the compared texts. A text is considered to be a sequence of words each of
which carries useful information. The words along with their combination structure
make a text convey a specific meaning. Texts considered in this paper are assumed to be
of sentence length.

Figure 1 shows the procedure for computing the sentence similarity between two
candidate sentences. Unlike existing methods that use a fixed set of vocabulary, the
proposed method dynamically forms a joint word set only using all the distinct words in
the pair of sentences. For each sentence, a raw semantic vector is derived with the
assistance of a lexical database. A word order vector is formed for each sentence, again
using information from the lexical database. Since each word in a sentence contributes
differently to the meaning of the whole sentence, the significance of a word is weighted
by using information content derived from a corpus. By combining the raw semantic
vector with information content from the corpus, a semantic vector is obtained for each
of the two sentences. Semantic similarity is computed based on the two semantic
vectors. An order similarity is calculated using the two order vectors. Finally the

sentence similarity is derived by combining semantic similarity and order similarity.
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Figure 1. Sentence similarity computation diagram.

The following sub-sections present a detailed description of each of the above
steps. Since semantic similarity between words is used both in deriving sentence

semantic similarity and word order similarity, we will first describe our method for

measuring word semantic

similarity.

3.1 Semantic Similarity between Words

A number of semantic similarity methods have been developed in the previous decade.

Different similarity methods have proved to be useful in some specific applications of

computational intelligence [4], [23]. Generally these methods can be categorised into

two groups: edge counting based (or dictionary/thesaurus based) methods and

information theory based (or corpus based) methods, a detailed review on word

similarity can be found in [20], [34]. After extensively investigating a number of

methods, we proposed a word similarity measure which provides the best correlation to

human judges for a benchmark word set as reported in [20]. This section summarises

these research findings.

Thanks to the success of a number of computational linguistic projects, semantic

knowledge bases are readily available, some examples being, WordNet [26], Spatial
Date Transfer Standard [39] and Gene Ontology [38]. The knowledge bases tend to

consist of a hierarchical structure modelling human common sense knowledge for a
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particular domain, or in this case general English Language usage (WordNet [26]). The

hierarchical structure of the knowledge base is important in determining the semantic

distance between words (see Figure 2 for an example portion).

entity, something

life form, being ...

animal,
beast, ...

adult,
grownup

professional,
professional person

educator,
pedagogue

teacher,
instructor

S

person, human, ...

N

male, female, Jjuvenile,
male person  female person  juvenile person
male child, female child, girl, child, kid,
boy, child child, little girl minor, ...

Figure 2. Hierarchical semantic knowledge base.

Given two words: w; and w,, we need to find the semantic similarity s(w;,w,). We can

do this by analysis of the lexical knowledge base (in this paper we have used WordNet)

as follows. Words are organised into synonym sets (synsets) in the knowledge base

[26], with semantics and relation pointers to other synsets. Therefore we can find the

first class in the hierarchical semantic network that subsumes the compared words. One

direct method for similarity calculation is to find the minimum length of path

connecting the two words [30]. For example, the shortest path between boy and girl in

Figure 2 is boy-male-person-female-girl, the minimum path length is 4, the synset of

person is called the subsumer for words of boy and girl; while the minimum path length

between boy and teacher is 6. Thus we could say girl is more similar to boy than

teacher to boy. Rada et al [30] demonstrated that this method works well on their much

constrained medical semantic nets (with 15000 medical terms). However this method

may be less accurate if it is applied to larger and more general semantic nets such as

WordNet [26]. For example, the minimum length from boy to animal is 4, less than
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from boy to teacher, but intuitively boy is more similar to teacher than to animal (unless
you are cursing the boy). To address this weakness, the direct path length method must
be modified by utilising more information from the hierarchical semantic nets. It is
apparent that words at upper layers of the hierarchy have more general semantics and
less similarity between them, while words at lower layers have more concrete semantics
and more similarity. Therefore the depth of word in the hierarchy should be taken into
account. In summary, similarity between words is determined not only by path lengths

but also by depth. We propose that the similarity s(w,,w,) between words w; and w; is a

function of path length and depth as follows:

s(wy,w,) = f(l,h) (1)

where, | is the shortest path length between w; and ws, h is the depth of subsumer in the
hierarchical semantic nets.

We assume that Equation (1) can be rewritten using two independent functions as:

s(wy,w,) = f,(1)- F,(h) (2)

f; and f;, are transfer functions of path length and depth respectively. We call these

information sources, of path length and depth, attributes.

3.1.1 Properties of Transfer Functions

Values of an attribute in Equation (2) may cover a large range up to infinity, while the
interval of similarity should be finite with extremes of exactly the same to no similarity
at all. If we assign exactly the same with a value of 1 and no similarity as 0, then the
interval of similarity is [0, 1]. The direct use of information sources as a metric of
similarity is inappropriate due to its infinite property. Therefore it is intuitive that the
transfer function from information sources to semantic similarity is a non-linear
function. Taking path length as an example, when the path length decreases to zero, the

similarity would monotonically increase towards the limit 1, while path length increases
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infinitely (although this would not happen in an organised lexical database), the
similarity should monotonically decrease to 0. Therefore, to meet these constraints the
transfer function must be a non-linear function. The non-linearity of the transfer
function is taken into account in the derivation of the formula for semantic similarity

between two words as in the following sub-sections.

3.1.2 Contribution of Path Length

For a semantic net hierarchy, as in Figure 2, the path length between two words, w; and
Wy, can be determined from one of three cases:
1.w; and w, are in the same synset
2.w; and w; are not in the same synset, but the synset for wy and w, contain one or
more common words. For example, in Figure 2, the synset for boy and synset for
girl contain one common word child.
3.w; and w, are neither in the same synset nor do their synsets contain any common
words.

Case 1 implies that w; and w, have the same meaning, we assign the semantic
path length between w; and w; to 0. Case 2 indicates that wy and w;, partially share the
same features, we assign the semantic path length between w; and w;, to 1. For case 3,
we count the actual path length between w; and w,. Taking the above considerations

into account, we set f;(I) in Equation (2) to be a monotonically decreasing function of I:

f()=e" (3)

where o is a constant. The selection of the function in exponential form ensures that f;
satisfies the constraints discussed in Section 3.2.1, and the value of f; is within the range

from O to 1.
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3.1.3 Scaling Depth Effect

Words at upper layers of hierarchical semantic nets have more general concepts and less

semantic similarity between words than words at lower layers. This behaviour must be

taken into account in calculating s(w;,w,). We therefore need to scale down s(w,,w,)

for subsuming words at upper layers and to scale up s(w;,w,)for subsuming words at

lower layers. As a result, fo(h) should be a monotonically increasing function with

respect to depth h. We set f; as:
em _e_ﬁh

f,(hy=—— 4
2( ) eﬂn +e_ﬁh ( )
where S > 0 is a smoothing factor. As f — o, then the depth of a word in the
semantic nets is not considered.
In summary, we propose a formula for a word similarity measure as:
M _ o
—a €7 —e
s(w,w,)=e"“ - ——» — 5
(W w;) = - (5)

where o €[0/1], S € (0,1] are parameters scaling the contribution of shortest path length

and depth, respectively. The optimal value of & and  are dependant on the knowledge
base used and can be determined using a set of word pairs with human similarity
ratings. For WordNet, the optimal parameters for the proposed measure are: o=0.2,

[3=0.45 as reported in [20].

3.2 Semantic Similarity between Sentences

Sentences are made up of words, so it is reasonable to represent a sentence using the
words in the sentence. Unlike classical methods that use a pre-compiled word list
containing hundreds of thousands of words, our method dynamically forms the semantic
vectors solely based on the compared sentences. Recent research achievements in
semantic analysis are also adapted to derive an efficient semantic vector for a sentence.

Given two sentences: Ty and T», a joint word set is formed:
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T=T, UT,
={w, w, - w}
The joint word set T contains all the distinct words from T, and T,. Since inflectional
morphology may cause a word to appear in a sentence with different forms that convey
a specific meaning for a specific context, we use word form as it appears in the
sentence. For example, boy and boys, woman and women are considered as four distinct
words and all included in the joint word set. Thus the joint word set for two sentences
T1:  RAM keeps things being worked with.

T,:  The CPU uses RAM as a short-term memory store.

T = {RAM keeps things being worked with The CPU uses as a short-term
memory store}

Since the joint word set is purely derived from the compared sentences, it is
compact with no redundant information. The joint word set, T, can be viewed as the
semantic information for the compared sentences. Each sentence is readily represented
by the use of the joint word set as follows. The vector derived from the joint word set is
called the lexical semantic vector, denoted by §. Each entry of the semantic vector
corresponds to a word in the joint word set, so the dimension equals the number of
words in the joint word set. The value of an entry of the lexical semantic vector,
5i(i=1,2,...,m), is determined by the semantic similarity of the corresponding word to a
word in the sentence. Take T, as an example:

Case 1: If w; appears in the sentence, $j is set to 1.
Case 2: If w; is not contained in T, a semantic similarity score is computed between w;
and each word in the sentence Ty, using the method presented in Section 3.1.
Thus the most similar word in T; to w; is that with the highest similarity score
¢. If g exceeds a preset threshold, then s;= ¢, otherwise ;= 0.
The reason for the introduction of the threshold is two fold. Firstly, since we use

the word similarity of distinct words (different words) the maximum similarity scores
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may be very low, indicating that the words are highly dissimilar. In this case we would
not want to introduce such noise to the semantic vector. Secondly classical word
matching methods [1] can be unified into the proposed method by simply setting the
threshold equal to one. Unlike classical methods, we also keep all function words. This
is because function words carry syntactic information that cannot be ignored if a text is
very short (e.g. sentence length). Although function words are retained in the joint word
set, they contribute less to the meaning of a sentence than other words. Furthermore
different words contribute towards the meaning of a sentence to differing degrees. Thus
a scheme is needed to weight each word. We weight the significance of a word using its
information content [32].

It has been shown that words that occur with a higher frequency (in a corpus)
contain less information than those that occur with lower frequencies [24]. The
information content of a word is derived from its probability in a corpus (see Section
4.2.2 for details). Each cell is weighted by the associated information I(w;) and 1(w.).

Finally the value of an entry of the semantic vector is:

5, =5 1(w)- 1(W) (6)

where w; is a word in the joint word set, W, is its associated word in the sentence. The

use of I(w;) and I(w.) allows the concerned two words contribute to similarity based

on their individual information contents. The semantic similarity between two sentences

is defined as the cosine coefficient between the two vectors:

_ 8178,
" sl

(7)

It is worth noting that the proposed method does not currently conduct word sense
disambiguation for polysemous words. This is based on the following considerations.
Firstly we wanted our model to be as simple as possible and not too demanding in terms
of computing resources. The integration of word sense disambiguation would scale up

the model complexity. Secondly existing sentence similarity methods have not included
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word sense disambiguation. This might be a consequence of the first factor. Thirdly,
even though the proposed method does not use disambiguation, it still performs well,

achieving promising results as shown later in our experiments.

3.3 Word Order Similarity between Sentences

Let us consider a pair of sentences, T; and T, that contain exactly the same words in the
same order with the exception of two words from T; which occur in the reverse order in
T,. For example:

T1: A quick brown dog jumps over the lazy fox.

T,: A quick brown fox jumps over the lazy dog.
Since these two sentences contain the same words, any methods based on “bag of
words” will give a decision that T; and T, are exactly the same. However it is clear for a
human interpreter that T, and T, are only similar to some extent. The dissimilarity
between Ty and T, is the result of the different word order. Therefore a computational
method for sentence similarity should take into account the impact of word order.

For the example pair of sentences T; and T, the joint word set is:

T = {A quick brown dog jumps over the lazy fox}

We assign a unique index number for each word in T, and T,. The index number is
simply the order number that the word appears in the sentence. For example, the index
number is 4 for dog and 6 for over in T;. In computing the word order similarity, a word
order vector, r, is formed for T, and T, respectively based on the joint word set T.
Taking Ty as an example, for each word w; in T we try to find the same or the most
similar word in T; as follows.

1. If the same word is present in T, we fill the entry for this word in r; with the

corresponding index number from T;. Otherwise, we try to find the most

similar word w, in T, (as described in section 3.2)
2. If the similarity between w; and W, is greater than a pre-set threshold, the entry

of w; in ry is filled with the index number of w; in T;.
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3. If the above two searches fail, the entry of w; in ry is 0.
Having applied the above procedure, the word order vectors for T, and T, are ry and r,
respectively. For the example sentence pair, we have:

n={12345678 9}

r,={12395678 4}
Thus a word order vector is the basic structural information carried by a sentence. The
task of dealing with word order is then to measure how similar the word order in two
sentences is. We propose a measure for measuring word order similarity of two

sentences as:

g —1- -]
B P

(8)

That is, word order similarity is determined by the normalised difference of word order.
The following analysis will demonstrate that S, is an efficient metric for indicating word
order similarity. To simplify the analysis, we will consider only a single word order
difference, as in sentences T; and To.

Given two sentences: Ty and T,, where both sentences contain exactly the same
words and the only difference is that a pair of words in T, appears in the reverse order in

T,. The word order vectors are:
r, :{ai...aj R ...am} for Ty

r,={b,-b;---b;, b} for T,

]
aj and aj+« are the entries for the considered word pair in Ty, bj and bj+ are the
corresponding entries for the word pair in T, k is the number of words from w; to Wi .

From the above assumptions, we have:

a;=b; =i fori=1,2,...,m excepti=j, j+k
aj =bjy =]

aj, =b; =j+k

e = ] = e
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then:

s, =1 K (9)

L 2 -k

We can also derive the same formula for a sentence pair with only one different word at
the kth entry. For the more general case with a more significant difference in word
order or a larger number of different words, the analytical form of the proposed metric
becomes more complicated (which we do not intend to present in this paper). The above
analysis shows that S; is a suitable indication of word order information. S, equals 1 if
there is no word order difference. S, is greater or equal to O if word order difference is
present. Since Sy is a function of k, it can reflect the word order difference and the
compactness of a word pair. The following features of the proposed word order metric
can also be observed.

1. S; can reflect the words shared by two sentences.

2. S, can reflect the order of a pair of the same words in two sentences. It only
indicates the word order, while it is invariant regardless of the location of the
word pair in an individual sentence.

3. Sy is sensitive to the distance between the two words of the word pair. Its value
decreases as the distance increase.

4. For the same number of different words or the same number of word pairs in a
different order, S, is proportional to the sentence length (number of words), its
value increases as the sentence length increases. This coincides with intuitive
knowledge, that is, two sentences would share more of the same words for a
certain number of different words or different word order if the sentence length
is longer.

Therefore the proposed metric is a good one for indicating the word order in terms of

word sequence and location in a sentence.
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3.4 Overall Sentence Similarity

Semantic similarity represents the lexical similarity. On the other hand, word order
similarity provides information about the relationship between words: which words
appear in the sentence and which words come before or after other words. Both
semantic and syntactic information (in terms of word order) play a role in conveying the
meaning of sentences. Thus the overall sentence similarity is defined as a combination

of semantic similarity and word order similarity:
S(T,,T,) = &5, +(1-6)S,
Ir, =1, (10)

1-g)rr 2l
ey

S, S,

5o

=0

where & <1 decides the relative contributions of semantic and word order information

to the overall similarity computation. Since syntax plays a subordinate role for semantic

processing of text [11], & should be a value greater than 0.5, i.e., & € (0.5]].

4 Implementation Using Semantic Nets and Corpus Statistics

Two databases were used in the implementation of the proposed method, namely
WordNet [26] and the Brown Corpus [3]. This section provides a brief description of
these two databases and then presents the search in the lexical taxonomy and the

derivation of statistics from the corpus.

4.1 The Databases

WordNet is an on-line semantic dictionary - a lexical database, developed at Princeton
by a group led by Miller [26]. The version used in this study is WordNet 1.6 which has
121,962 words organised in 99,642 synonym sets. WordNet partitions the lexicon into
nouns, verbs, adjectives, and adverbs. These sets of words are organised into synonym
sets, called synsets. A synset represents a concept in which all words have a similar
meaning. Thus words in a synset are interchangeable in some syntax. Knowledge in a

synset includes the definition of these words as well as pointers to other related synsets.
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The Brown Corpus [3] comprises of 1,014,000 American English words and was
compiled at the Brown University for standard texts in 1961.
In this study, WordNet is the main semantic knowledge base for the calculation of

semantic similarity, while the Brown Corpus is used to provide information content.

4.2 Obtaining Information Sources

The implementation of semantic similarity measures consists of two sub-tasks
concerning preparation of the information sources that are used in the formation of the
semantic and word order vectors. Firstly, a search of the semantic net is performed for
the shortest path length between the synsets containing the compared words and the
depth of the first synset subsuming the synsets corresponding to the compared words
[20]. Secondly, the calculation of the necessary statistical information from the Brown

Corpus is performed.

4.2.1 Search in WordNet

Synsets in WordNet are designed in a tree-like hierarchical structure ranging from many
specific terms at the lower levels to a few generic terms at the top. The lexical hierarchy
is connected by following trails of superordinate terms in “is a” or “is a kind of” (ISA)
relations. To establish a path between two words, each climbs up the lexical tree until
the two climbing paths meet. The synset at the meeting point of the two climbing paths
is called the subsumer, a path connecting the two words is then found through the
subsumer. Path length is obtained by counting synset links along the path between the
two words. The depth of the subsumer is derived by counting the levels from the
subsumer to the top of the lexical hierarchy. If a word is polysemous (i.e., a word
having many meanings), multiple paths may exist between the two words. Only the
shortest path is then used in calculating semantic similarity between words. The
subsumer on the shortest path is considered in deriving the depth of the subsumer. Most

previous similarity measures only use the shortest path length from this ISA search. It is
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commonly accepted that other semantic relations also contribute to the determination of
semantic similarity. One important such relation is part-whole (or HASA) relation. Thus
we also search for HASA relations in WordNet in obtaining the shortest path length as
did [20], [34]. In addition, a mechanism is used to deal with the following exceptional
case, i.e., words not contained in WordNet. If the word is not in WordNet, then the
search will not proceed and the word similarity is simply assigned to zero. A warning
message on validity of the similarity is prompted to the user. Alternatively, this problem
could be solved if the missing word exists in another lexical database through

knowledge fusion [34].

4.2.2 Statistics from the Brown Corpus

The probability of a word w in the corpus is computed simply as the relative frequency:

N n+1

(11)

where N is the total number of words in the corpus, n is the frequency of the word w in
the corpus (increased by 1 to avoid presenting an undefined value to the logarithm).

Information content of w in the corpus is defined as:

(W) = log p(w) 1 log(n+1) (12)
log(N +1) log(N +1)

so | €[0]].

4.3 Hlustrative Example: Similarities for a selected sentence pair

To illustrate how to compute the overall sentence similarity for a pair of sentences, we
provide below a detailed description of our method for two example sentences:

T:: RAM keeps things being worked with.

T,:  The CPU uses RAM as a short-term memory store.

The joint word set is:
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T = {RAM keeps things being worked with The CPU uses as a short-term
memory store}
Semantic vectors for T; and T, can be formed from T and corpus statistics. The process

of deriving semantic vectors for T is shown in Table 1.

RAM | keeps | things | being | worked | with | The | CPU uses | as | a | short-term | memory | store
RAM 1 0.8147 | 0.8147
keeps 1
things 1 0.2802 | 0.4433
being 1
worked 1
with 1

\ { { \ \ Ll \ \ VI { { {
§ 1 1 1 1 1 1 0 |0.2802|0.4433| 0 0 0 0.8147 | 0.8147

Weight |I(RAM) | I(keeps) | I(things) | I(being) | I(worked) [ I(with) [I(The)| I(CPU) | I(uses) | I(as) | I(a) | I(short-term) | I(memory) | I(store)

1(RAM) | I(keeps) | I(things) | I(being) | I(worked) | I(with) [I(The)| I(things) | I(things) | I(as) | I(a) | I(short-term) | I(RAM) | I(RAM)

Table 1. The process for deriving the semantic vector.

In the table, the first row lists words in the joint word set T, the first column lists
words in sentence T; and all words are listed in order as they appear in T and T;. For
each word in T, if the same word exists in Ty, the cell at the cross point is set to 1.
Otherwise the cell at the cross point of the most similar word is set to their similarity
value or 0, dependent on whether the highest similarity value exceeds the pre-set
threshold which was set to 0.2* in our experiments. For example, the word memory is
not in Ty, but the most similar word is RAM, with a similarity of 0.8147. Thus, the cell
at the cross point of memory and RAM is set to 0.8147 as it exceeds the threshold of 0.2.
All other cells are left empty. The lexical vector § is obtained by selecting the largest
value in each column. The last row lists the corresponding information content for
weighting the significance of the word. As a result, the semantic vector for T is:

5;={0.390 0.330 0.179 0.146 0.239 0.074 0 0.082 0.1 0 0 0 0.263 0.288}

In the same way, we get:

! Empirically derived threshold, word similarity values of less than 0.2 are intuitively
too dissimilar. This value may change for semantic nets other than WordNet.
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5,={0.390 0 0.1 0 0 0 0.023 0.479 0.285 0.075 0.043 0.354 0.267 0.321}
From s; and s, the semantic similarity between the two sentences is Ss=0.61309.
Similarly the word order vectors are derived as:

n={1234560330001 1}

r={40300012356789}
and thus S,=0.2023.

Finally the similarity between sentences “RAM keeps things being worked with”
and “The CPU uses RAM as a short-term memory store” is 0.5522, using 0.85 for 8%
This pair of sentences has only one co-occurrence word RAM, but the meaning of the
sentences is similar. Word co-occurrence methods would result in a very low similarity
measure [24], while the proposed method gives a relatively high similarity. This
example demonstrates that the proposed method can capture the meaning of the

sentence regardless of the co-occurrence of words.

5 Experimental Results

Although a few related studies have been published, there are currently no suitable
benchmark datasets (or even standard text sets) for the evaluation of sentence (or very
short text) similarity methods. Building such a dataset is not a trivial task due to
subjectivity in the interpretation of language, which is in part due to the lack of deeper
contextual information. Thus the construction of a suitable data set would require a
large-scale psychological study over a cross-section of (the common) language speakers
so as to include different cultural backgrounds. Such a large study is outside the scope
of this paper but in order to evaluate our similarity measure a preliminary data set of
sentence pairs was constructed with human similarity scores provided using 32
participants (this will form part of a larger future study). These sentences all consist of

dictionary definitions of words and so a further dataset of non-definitive sentences was

2 Empirically derived value through experiments on sentence pairs.
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produced from the NLP literature. Currently no human similarities for this second
dataset exist so it is left to the reader to judge our algorithm's performance for each of
these sentence pairs.

Our similarity method requires three parameters to be determined before use: a
threshold for deriving the semantic vector, a threshold for forming the word order
vector, and a factor 6 for weighting the significance between semantic information and
syntactic information. All parameters in the following experiments were empirically
found using a small set of sentence pairs, evidence from previous publications [20][11]
and intuitive considerations as follows. Since syntax plays a subordinate role for
semantic processing of text, we weighted the semantic part higher, 0.85 for &. For the
semantic threshold, we considered two aspects: to detect and utilise similar semantic
characteristics of words to the greatest extent and to keep the noise low. This requires us
to use a semantic threshold which is small, but not too small. Using a small threshold
allows the model to capture sufficient semantic information distributed across all of the
words. However too small a threshold will introduce excessive noise to the model
causing a deterioration of the overall performance. A similar consideration applied to
the word order threshold, but we used a higher value. For the word order vector to be
useful the pair of linked words (the most similar words from the two sentences) must
intuitively be quite similar, as the relative ordering of less similar pairs of words
provides very little information. Based on these considerations, we first chose some
starting values for the three parameters and then identified the appropriate values using
the selected sentence pairs. In this way we empirically found 0.4 for word order

threshold, 0.2 for semantic threshold and 0.85 for .

5.1 Selected NLP Sentences

Sentence pairs in Table 2, were selected from a variety of papers and books on natural
language understanding. It can be seen that the similarities in the table are fairly

consistent with human intuition. One obvious exception to this is the first pair of
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sentences in which the word ‘bachelor’ has been replaced with a phrase ‘unmarried
man’. As our technique compares words on a word-by-word basis, such multiple word
phrases are currently missed, although similarities are found between the word pairs:
bachelor-man and bachelor-unmarried. In addition, there is a big difference in
similarity between examples 6 and 14, which only differ in the type of fruit involved
(apple vs orange). This difference is the consequence of neglecting multiple senses of
polysemous words as stated in Section 3.2. Orange is a colour as well as a fruit and is
found more similar to another word on this basis. Word sense disambiguation may

narrow this difference and it needs to be investigated in future work.

Sentence Pair Similarity | Sentence Pair Similarity
1. | like that bachelor. 2. lhave apen.

I like that unmarried man.  |0.561 Where do you live? 0
3. Johnis very nice. 4. Red alcoholic drink.

Is John very nice? 0.977 A bottle of wine. 0.585
5. ltisadog. 6. Red alcoholic drink.

That must be your dog. 0.739 Fresh orange juice. 0.611
7. ltisadog. 8. Red alcoholic drink.

Itis alog. 0.623 An English dictionary. 0
9. ltisadog. 10. Dogs are animals.

It is a pig. 0.790 They are common pets. |0.738
11. 1 have a hammer. 12. Canis familiaris are

Take some nails. 0.508 animals. 0.362

Dogs are common pets.

13. | have a pen. 14. Red alcoholic drink.

Where is ink. 0.129 Fresh apple juice. 0.420
15. A glass of cider. 16. | have a hammer.

A full cup of apple juice. 0.678 Take some apples 0.121

Table 2. Similarities between selected sentence pairs.

5.2 Experiment with Human Similarities of Sentence Pairs

In order to evaluate our similarity measure, we collected human ratings for the
similarity of pairs of sentences following existing designs for word similarity measures.
The participants consisted of 32 volunteers, all native speakers of English educated to

graduate level or above. We began with 65 noun word pairs whose semantic similarity
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was originally measured by Rubenstein and Goodenough [35]. This data has been used
in many experiments in the intervening years, its properties are well-known and it has
shown stability when re-rated with new groups of participants. The frequency
distribution of the data exhibits a strong bias, however, with two-thirds of the data
falling in the upper and lower quarters of the similarity range. A specific subset of 30

pairs has been used, which reduces bias in the frequency distribution [6], [27].

5.2.1 Materials

We began with the set of 65 noun pairs from Rubenstein & Goodenough and replaced
them with their definitions from the Collins Cobuild dictionary [37]. Cobuild dictionary
definitions are “...written in full sentences, using vocabulary and grammatical
structures that occur naturally with the word being explained.” The dictionary is
constructed using information from a large corpus, the Bank of English, which contains
400 million words. Where more than one sense of a word was given we chose the first
noun sense in the list. Two of the definitions were modified. The noun “Smile” was
simply defined in terms of the verb “to smile.” We substituted a phrase from the verb
definition into the noun definition to form a usable sentence. There are some similar
problems where one noun is defined in terms of another e.g. Automobile/Car,
Cord/String, and Grin/Smile. As each of these combinations is used in the data set we
have not made any substitutions in the definitions. The definition of “Bird” was split
over three short sentences. We considered all to contribute to a distinctive definition so
we combined them as phrases in a single, longer sentence.

Two of the word pairs have definitions that are genuinely virtually identical,
Rooster/Cock and Midday/Noon. The complete sentence data set used in this study is

available at http://www.docm.mmu.ac.uk/STAFF/D.McLean/SentenceResults.htm
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5.2.2 Procedure

The participants were asked to complete a questionnaire, rating the similarity of
meaning of the sentence pairs on the scale from 0.0 (minimum similarity) to 4.0
(maximum similarity), as in Rubenstein & Goodenough [35]. Each sentence pair was
presented on a separate sheet. The order of presentation of the sentence pairs was
randomised in each questionnaire. The order of the two sentences making up each pair
was also randomised. This was to prevent any bias being introduced by order of
presentation. The participants were asked to complete the questionnaire in their own
time, and to work through from start to end in a single sitting. A rubric was provided
which contained linguistic anchors for the five major scale points 0.0, 1.0, 2.0, 3.0, 4.0 -
taken from a study by Charles [6]. This is important because, according to Charles it
yields "psychometric properties analogous to an interval scale.” It is common practice in
similarity measurement to use statistics such as mean, standard deviation and Pearson
product-moment correlation. All of these require the data to be measured on an interval
scale or better. Use of the linguistic anchors reconciles these otherwise conflicting
requirements.

Each of the 65 sentence pairs was assigned a semantic similarity score calculated
as the mean of the judgments made by the participants. The distribution of the semantic
similarity scores was heavily skewed towards the low similarity end of the scale.
Following a similar procedure to Miller and Charles [27] a subset of 30 sentence pairs
was selected to obtain a more even distribution across the similarity range. This subset
contains all of the sentence pairs rated 1.0 to 4.0 and 11 (from a total of 46) sentences
rated 0.0 to 0.9 selected at equally spaced intervals from the list. These can be seen in
Table 3, all human similarity scores are provided as the mean score for each pair and
have been scaled into the range [0..1], for comparison with our method's similarity

measure (algorithm similarity measure).
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R&G R&G Human Algorithm | R&G R&G Human Algorithm

No. Word Similarity | Similarity | No. Word Similarity Similarity
Pair (Mean) Measure Pair (Mean) Measure

1 Cord 0.01 0.33 51 Glass 0.14 0.65
smile tumbler

5 Autograph 0.01 0.29 52 Grin 0.49 0.49
shore smile

9 Asylum 0.01 0.21 53 Serf 0.48 0.39
fruit slave

13 Boy 0.11 0.53 54 Journey 0.36 0.52
rooster voyage

17 Coast 0.13 0.36 55 Autograph 0.41 0.55
forest signature

21 Boy 0.04 0.51 56 Coast 0.59 0.76
sage shore

25 Forest 0.07 0.55 57 Forest 0.63 0.70
graveyard woodland

29 Bird 0.01 0.33 58 Implement 0.59 0.75
woodland Tool

33 Hill 0.15 0.59 59 Cock 0.86 1.00
woodland rooster

37 Magician 0.13 0.44 60 Boy 0.58 0.66
oracle lad

41 Oracle 0.28 0.43 61 Cushion 0.52 0.66
sage pillow

47 Furnace 0.35 0.72 62 Cemetery 0.77 0.73
stove graveyard

48 Magician 0.36 0.65 63 Automobile 0.56 0.64
wizard car

49 Hill 0.29 0.74 64 Midday 0.96 1.0
mound noon

50 Cord 0.47 0.68 65 Gem 0.65 0.83
string jewel

Table 3. Sentence data set results.

5.2.3 Results and Discussion

Our algorithm's similarity measure achieved a reasonably good Pearson correlation

coefficient of 0.816 with the human ratings, significant at the 0.01 level . However, a

further factor should be taken into consideration, what is the best performance that

could be expected from an algorithmic measure under this particular set of experimental
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conditions? An upper bound was set in a comparative study of word similarity
techniques by calculating the correlations between individual participants and the group
using leave-one-out resampling [32], then finding the mean. In a similar manner, we
calculated the correlation coefficient (Correlation r) for the judgements of each
participant against the rest of the group and then took the mean. The results are

presented in Table 4.

Correlationr | Comment
Algorithm Similarity 0.816 With average of all participants,
Measure significant at 0.01 level
Mean of all participants | 0.825 Standard Deviation 0.072
Worst participant 0.594
Best participant 0.921

Table 4. Similarity correlations.

If we take the performance of the typical human, 0.825 as the upper bound then it
reasonable to say that our similarity measure is performing well at 0.816, within the
constraints of the experiment.

Comparing the word-pair ratings from Rubenstein and Goodenough with the
corresponding sentence-pair ratings from our technique (Table 3), it is apparent that
people perceive the semantic similarities of words differently from their definitions.
Inspection of the word-pair vs sentence-pair for the full data set reveals a clear and
regular non-linear relationship, further discussion of which is beyond the scope of this
paper.

It is worth giving some consideration to the skew in the frequency distribution of
the data set. The Rubenstein and Goodenough data has a frequency bias towards the
extremes (high and low ends of the similarity scale) of the word-pair data set and
suggested that participants may react differently to numerically equal intervals on the
similarity scale. It has been postulated in word similarity studies, that participants take
an accommaodating approach by selecting the most similar sense of a polysemous word,

artificially inflating the semantic similarity rating for some word pairs. We argue that
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sentences carry their own context with them, largely disambiguating any polysemous
words they contain to specific senses. Evidence supporting this comes from the
Glass/Tumbler pair. This was scored 3.45 as a word pair in the Rubenstein &
Goodenough trials and 0.55 as a sentence pair in our trials. This is consistent with the
word pair judges interpreting Glass as an item to drink out of, whereas the definition in
the sentence pair is of the substance glass. Similarly the Magician/Wizard pair was
scored 3.21 as a word pair and 1.42 as sentence pair, this is consistent with the word
Magician being interpreted as a practitioner of magic, whereas the sentence definition
covers the “conjurer” sense. Finally it is worth noting that the Cord/String,
Automobile/Car and Grin/Smile pairs were rated about halfway between minimum and
maximum similarity, indicating that participants did not automatically substitute the

semantic content of the second definition into the first.

6 Conclusions

This paper presented a method for measuring the semantic similarity between sentences
or very short texts, based on semantic and word order information. Firstly, semantic
similarity is derived from a lexical knowledge base and a corpus. The lexical knowledge
base models common human knowledge about words in a natural language, this
knowledge is usually stable across a wide range of language application areas. A corpus
reflects the actual usage of language and words. Thus our semantic similarity not only
captures common human knowledge, but it is also able to adapt to an application area
using a corpus specific to that application. Secondly, the proposed method considers the
impact of word order on sentence meaning. The derived word order similarity measures
the number of different words as well as the number of word pairs in a different order.
The overall sentence similarity is then defined as a combination of semantic similarity
and word order similarity. Considering the view that word order plays a subordinate role
for interpreting sentence meaning, we weight word order similarity less in defining the

overall sentence similarity. To evaluate our similarity algorithm, we collected a set of
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sentence pairs from a variety of articles and books in computational linguistics. An
initial experiment on this data illustrates that the proposed method provides similarity
measures that are fairly consistent with human knowledge. Next we constructed a data
set of 30 sentence pairs using a dictionary definition for each of the Rubenstein and
Goodenough word pairs [35]. The sentences were rated by human participants as a
benchmark for comparison with our method which performed well on this data set.
Further work will include the construction of a more varied sentence pair dataset
with human ratings and an improvement to the algorithm to disambiguate word sense
using the surrounding words to give a little contextual information. Currently
comparison with some of the other algorithms discussed is very difficult due to a lack of
any other published results on sentence similarities (a benchmark data set) and a variety
of problems in re-implementing these algorithms for this domain. These include the
substantial amount of parameters which must be manually set and the definition of

features.
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